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Abstract
Let G be a finite group and let Z(G)be the center of G . The commuting graph,

denoted by T'(G), is a graph whose vertices are non-central elements of G i.e

VT (G)|=|G|-|Z (G)|in which two vertices are adjacent if they commute. In this

paper we present the commuting graph of all non-abelian metabelian groups of order
less than 24, with its properties which includes the independent number, the
chromatic number, the clique number and the dominating number.
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1. Introduction

This section provides some background related to the metabelian groups and
graph theory, suppose G is a finite non-abelian group. We begin with metabelian
group. In 2010, Abdul Rahman has found all metabelian groups of order at most 24,
there are 59 groups of order less than 24 with their presentations including abelian
and non-abelian groups. A metabelian group is a group whose commutator
subgroups are abelian. Equivalently, a group G is metabelian if and only if there

exists an abelian normal subgroup 4 such that the quotient group % is abelian

(Rose, 1994). By a metabelian group is meant a nilpotent group of nilpotency class
two (Kurosh, 2014). A metabelian group is also a solvable group of derived length
two (Neumann, 2012). In the following, we state fundamental concepts related to
graph theory which are needed in this paper.

Graph theory is the study of vertices and edges. More precisely, it involves the
way in which sets of points can be connected by edges. The concept in graph theory
is widely used among many fields and one of these uses is in group theory. The
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graph I' is connected if it has precisely one component. However, a graph is called a
complete graph if each pair of distinct vertices are adjacent, and it is denoted by K,
where n is the number of adjacent vertices (Godsil and Royle, 2001). The graph is
called empty if there is no adjacent between its vertices. In addition, a graph is called
null if it has no vertices and in this paper we denote K, the null graph (Bondy and
Murty, 1982) and (Kurosh, 2014). Furthermore, a non-empty set S of V' (I') is called
an independent set of T" if there is no adjacent between two elements of S in I".

2. Preliminaries

In this section, some resent works that are needed in this paper are includes.
This section is divided into two parts. The first part provides some definitions of
properties of graphs. The second part, states the list of metabelian groups of order
up to 24.

21 Properties of Graphs
We restate some graph properties that are needed in this paper.

Definition 2.1.1: Independent Number (Erfanian and Tolue, 2012)
Anon empty set S of V' (I') is called an independent set of T" if there is no adjacent

between two elements of § in I', while the independent number is the number of
vertices in the maximum independent set and is denoted by «/(I') .

Definition 2.1.2: Chromatic Number (Erfanian and Tolue, 2012)
Chromatic number is the smallest number of colours needed to colour the vertices of
I" so that there will be no two adjacent vertices share the same colour and denoted

by x(I).

Definition 2.1.3: Dominating Number (Erfanian and Tolue, 2012)
The dominating set X <V (I') is the set such that for each v ¢ X , there exists x in

v ¢ X such that v adjacent to x . The minimum size of X is called the dominating
number and it is denoted by ().

Definition 2.1.4: Clique Number (Erfanian and Tolue, 2012)
Clique is a complete subgraph inI". The clique number is the size of the largest
clique I' and it is denoted by o(I').
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2.2 List of Metabelian Groups of Order up to 24
In 2010, Abdul Rahman (Abdul Rahman, 2010) classified all non-abelian metabelian
groups of order up to 24 into 25 groups. The groups are stated as follows:

(1) D, <ab a —bz—lbab—a'>

(2) D, =(ab:a" =b> =1,bab=a"')

(3) QgE<ab:a4:1,a2=b2,b_lab:a_'>

(4) D, <ab a’=b>=1bab =a" 1>

(5) Z,a Z, =(a,b :a" =b> =1,bab =a)

(6) 4, E<a b,c:a2:bzzc3=1,ba=ab,ca:abc,cb:ac>
(7) Dy =(a,b:a®=b>=1,bab =a™")
(8) D, <ab ‘a —bz—lbab—al>
(9) Dy=(ab,:a’ =b> =1,bab =a™")
(10)Quasi-dihedral group, G =(a,b :a* =b> =1,bab =a’)
(11)Q16_<ab a*=1,a" =b" zl,aba=b>

(12)D,xZ, =(a,b,c :a* =b> =c =l,ac =ca,bc =cb,bab =a™")
(13)z, ><Q4_<abc a*=b* =c’> =1ba=a’b ac-caba—cb>
(14) Modular —16 = <a,b:a :bzzl,ab:ba>

(15)B = <a,b:a4:b4:l,ab:ba3>

(16)K = <a,b,c ca*=b* =c* =1,bab =a,ac :ca>

(17)G44_<ab a*=b" zl,ababzl,ab3=ba3>

(18) D, <a,b :a’ =b* =1,bab :a’1>

(19)S, xZ, _<ab c:a’=b*=¢? zl,bab:a’l,ac:ca,bc:cb>
(20)(Zz,xZ)a Z, ;<a,b,c:a2 =b’ =¢® =1,ba =cb,bab za,cac:a>
(21)D,, = (a,b :a" =b* =1,bab =a™")

(22) F,,=Z; aZ4_<ab a*=b’ zl,bazab2>

(23) Z, aZ4_<ab a —bs—lbab—a>

(24)F., =Z.a Z3E<a,b:a =b’ =1,ba=ab2>

(25)D 11_<ab a' —b2=1,bab:a71>
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3. Main Results

Throughout this section, n >3 is an integer and there is 25 non-abelian
metabelian groups of order less than 24. In this section, we commute the commuting
graph for non-abelian metabelian groups of order less than 24. The result of the
commuting graph on dihedral groups is investigated by (Chelvama et al., 2011).

Theorem 3.1

Let G =0, ;<a,b cat =1,a> =b* =,b"'ab :a‘1> be the Quaternion group of order 8.
Then, the commuting graph of G, T'(G) =K, UK, UK,.

Proof: The center of a group G, denoted by Z(G), is defined as
Z(G)={x eG:xy =yx,forally eG}, then Z(G)={e.a’}. Since the order of G is 8

and the order of the center is 2, hence, the number of vertices of commuting graph
O, is6,i.eV (I'G)) =|G|-|Z(G)=[8-2=6.

Table 3.1: The Cayley Table of O,

e a a’ b ab o’ ab  a’b
e e a a’ b ab o a b
a a a’ e ab b o a’b b
a’ a’ e a> ab ab a b a’b
b b a’b ab a’ e a’b a a’
a’b a’h ab  a’b e a’ b a’ a
a’ a’ a’ a a’b b e a’b ab
ab ab b a’b ’ a ab a e
a’b a’b a’b b a a’ ab e a’

follows:

Thus, a commutes with ¢ and itself.
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ii. Let x =b and y be any element in Q. then the product of xy given as follows:
b =(b)(a)#(a)(b)=ab

ab =(b)(a3)¢(a3)(b)=a3

a = (b)(b)=(b)()=a
e =(b)(ab)=(a)()
a=(b)(ab)¢(ab)(b)=a3
a’=(b)(a’b)#(a’)(b)=

Thus, » commutes with «’b and itself.

e

iii. Let x =b and y be any element in O, . then the product of xy given as follows:
b=(ab)(a)#(a)(ab)=a’h

a’b =(ab)(@’) # (@’ )ab) =b

a* =(ab)(b)#(b)(ab)=a

az(ab)(azb);t(azb)(ab):

@ = (ab)(ab) = () ab )

e = (ab) (@) =&’ ) ab

Thus, ab commutes with a3b and itself.

From the calculation above, a commutes with «’, » commutes with «’» and ab
commutes with «’» , Hence, the commuting graph of G is presented in figure 3.1.

a H a’ U b a’b| U abH a’b

Figure 3.1: The commuting graph of O;, I'(G) =K, UK, UK,.

Theorem 3.2: Let G be a metabelian group of order 12,
2,4 Z,=(a,b:a*=b’ =1,bab =a). Then, ['(Z,a Z,) =K, UK, UK, UK,.

Proof: G =7Z,34 Z, :{e,a,b,ab,a2,a3,b2,azb,a3b,ab2,a2b2,a3b2}, then Z (G) :{e,az}.
Since the order of G is 12 and order of the center is 2, hence, the number of vertices
of commuting graph Z,a Z, is 10, thatis, ¥ (I'(G)) =|G|-|Z (G )| =12-1=10. Since,

a commutes with a’,ab® commutes witha’s2, b commutes with a’b,b*,a’b*and ab
commutes with 4. Hence, the commuting graph of G is
I'(z,az,)=K,UK,UK, UK,.
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Theorem 3.3: Let G be a metabelian group of order 12,
A4, E{a,b :a’ =b’ =¢’ =1,ba = ab,ca = abc,ch zac}. Then, I'(4,)=K,UK,UK,uU
K, UKk,.

Proof: G =4, :{e,a,b,c,ab,ac,ba,ca,c2b,a02,bcz,CZ}, then Z(G)z{e}. Since the
order of G is 12 and the order of the center is 1, hence, the number of vertices of
commuting graph 4, is 11, that is, ¥ (I'(G)) =|G|-|2(G)[=12-1=11, and since ¢

commute with ¢*, bcommutes with aband a, ac commutes with bc’and ca
commutes with  bc,ac’. Hence, the commuting graph of G s
I'(4,)=K, UK, UK, UK, UK,.

Theorem 3.4: Let G be a metabelian group Quasi-dihedral of order 16,
G =(a,b:a" =b> =1bab =a’). Then, I'(G) =K, UK, UK, UK, UK,.

Proof: G = {e,a,b,az,a3,a4,a5,a6,a7,ab,a2b,aba,ba,ba7,aba7,a7b} ,then Z(G)= {e,a4}.
Since the order of G is 16 and the order of the center is 2, hence, the number of
vertices of commuting graph G is 14, that is ' (I'(G))=|G|-|Z(G)|=16-2=14, and

b commutes with aba, ab commutes with ba’, a’b commutes with aba’, ba
commutes with ¢’ and a commutes with a’,a’,a*,a’,a’,a’. Hence, the commuting
graphof G is T'(G)=K, UK, UK, UK, UK,.

Remark 3.1: The commuting graph of metabelian group of order 16, namely Q,,, is
the same as commuting graph in Theorem 3.4.

Theorem 3.5: Let G be a metabelian group of order 16,
D,xZ, :<a,b,c :a* =b* =¢? =1,ac =ca,bc =cb,bab za’1>. Then, I'(D,xZ,)=K,

K, UK,.
Proof: G =D,6xZ, :{e,a,a2,a3,b,c,ab,ac,bc,abc,azb,azc,a3b,a3c,a2bc,a3bc}, then
Z(G)={e.a’,c.a’c}. Since the order of G is 16 and the order of the center is 4,

hence, the number of vertices of commuting graph G is 12, that is
7V (r(G))=|G|-|2(G)|=16-4=12, and since a commutes with ac,a’.a’c, b

commutes with bc,a’h,a’bc and ab commutes with abc,a’b,a’be . Hence, the

commuting graph of G is I'(D, xZ,)=K, UK, UK,.
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Remark 3.2: The metabelian groups D, xZ,, Z, xQ,, Modular-16, B, K , and G,

of order 16, have the same commuting set, therefore they have the same commuting
graphs similar to the graphs in Theorem 3.5.

Theorem 3.6: Let G be a metabelian group of order 18,
S, xZ, ;<a,b,c :a’=b*=c’=1,b=a",ac =ca,bc :cb>. Then, I'(S,xZ,)=K, UK,
u K, UK.

Proof:

G=8,xZ,= {e,a,b,bcz,azb,c,cz,aCZ,a2,bc,a2b02,ab,ac,azcz,azbc,abcz,azc, abc}, then
Z(G)= {e,c,cz}. Since the order of G is 18 and the order of the center is 3, hence,
the number of vertices of commuting graph G is 15, that s,
v ((G)=|G|-|z(G)|=18-3=15, and since b commutes with hc*,bc, a commutes
with ac’,a’,ac,a’c®,a’c,a’ commutes with a’bc’,a’bc, and ab commutes with

abc® ,abc . Hence, the commuting graph of G is I'(S,xZ,)=K, UK, UK, UK,.

Theorem 3.7: Let G be a metabelian group of order 18,
(235 Z3)5 Z, E<a,b,c ca’ =b’ =¢® =1,ba =cb,bab = a,cac =a>. Then,
I(2,32,)3z,=

K, ufalulab}ufac} u{abz} U {abc} U{a02 } u{abzc} U {ab(:2 } u{abzcz} :

Proof: G =(Z3 ><Z3)§1 Z,= {e,a,b,c,ab,ac,b’ ,bc,c*,ab’ abc,ac’ ,b’c,bc*,ab’c,abc’,

abcz,bzcz,abzcz}, then Z(G)={e}. Since the order of G is 18 and the order of the
center is 1, hence, the number of vertices of commuting graph G is 17, that is,
V (I'G)) =|G|-|Z (G)|=18-1=17, and since b commutes with ¢,b°,be,c®,b’c,bc’ ,b’c?,

and a,ab,ac, ab’,abc,ac’,ab’c,ab’c® are commute with itselfs. Hence, the
commuting graph of G is
(2,3 Z,)3 Z, =K, Ula}Ulab} Ulac} Uab*} Ulabe} Ufac? } Olab* e} L {abe” o {ab’c?

Remark 3.3: The commuting graph of metabelian group of order 20, namely
Z.,aZ,, isthe same as commuting graph in Theorem 3.7.

Theorem 3.8: Let G be a metabelian group of order 20,
Foy2ZaZ,=(ab:a" =b’=1,ba=ab’). Then, T(F, =Z,42,)=K, UK, UK,
UK, UK, UK,.
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Proof:F ,,=Z.,aZ,= {e,a,b,ab,ba,aba,a2,a3,a3b,a2b,b2,b4a3,b3,ba3,ab4a,b4,b4a,ab4

,a3b4,a2b4}, then Z (G) = {e} . Since the order of G is 20 and the order of the center
is 1, hence, the number of vertices of commuting graph G is 19, that is,
V (T'(G))=|G|-|2(G)|=20-1=19, and since a commutes with «’,a’ and b
commutes with 5°,6°,b*, &’ commutes with b°a,a’h*, and «’h commutes with

ba,a’b*. Hence, the commuting graph of G is
[(F,=Z3Z7,)=K, UK, UK, UK, UK, UK,.

Theorem 3.9: Let G be a metabelian group of order 21,
F,=2Z,aZ,= {a,b :a’=b" =1,ba =ab2>. Then,
I(Z2,aZ,)=K,UK,UK, UK, UK, UK, UK, UK,.

Proof: Z.3a Z, = {e,a,b,az,azb,bz,ab,aba,abéaz,ba,b“’az,abaz,azbéaz,baz,b“,azba2 ,be,
ab"a,b"a,azbé,ab"} , then Z (G) = {e}. Since the order of G is 21 and the order of the
center is 1, hence, the number of vertices of commuting graph of G is 19, that is,
V(I'G)) =|G|-|Z(G)|=21-1=20, and since a commutes with a*, b commutes

with b*,ab’a’,aba’,b*,b°. @’ commutes with b°a, ab commutes with b°a*, aba
commutes with a’b°a*, ba commutes with a’6°, ba® commutes with ab®, a’ba’
commutes with ab°a. Hence, the commuting graph of G is
I(2,aZ,)=K,UK, UK, UK, UK, UK, UK, UK,.

Proposition 3.1: Let Q, ;<a,b cat=1,a> =b*,b'ab :a‘1> be a non-abelian
metabelian group of order 8. The clique number of the commuting graph of G is
org™)=2.

Proof: Since the largest subgraph of O, is K,, therefore, the clique number,

o(Tg™)=2.

154 Vol.3 No.7 (2016) gyl s 3S305 (5,538



Zuzan Naaman Hassan

Table 3.2: The Clique Number of Non-abelian Metabelian Groups of order up to 24

Non-Abelian Metabelian Clique No. Non-Abelian Metabelian Clique No.
Groups Groups
S, 2 Mudular —16 4
D, 2 B 4
D; 4 K 4
A, 3 G,, 4
Z,37, 4 D, 8
D, 4 S, %xZ, 6
D, 6 (Z,xZ)A Z, 8
D, 6 D,, 8
Quasi — Dihedral Group 6 F,=2Z3aZ, 4
D,xZ, 4 737, 8
7, xQ, 6 7,37, 6
O, 6 D, 10

Proposition 3.2: Let Q,= <a,b cat=1,a> =b*,b"'ab :a“> be a non-abelian
metabelian group of order 8. The chromatic number of the commuting graph of G is
2(rm)=2.

Proof: The chromatic number of the commuting graph of O, ;((Fg’g’”’”):z is two

since the vertices are adjacent in component is K,. Thus, they must have different
colors of vertices.

o by | | [ b | | [ o

A B C
Figure 3.2: The Commuting Graph of Q,, I'(G)=K, UK, UK,
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Table 3.3: The Chromatic Number Of Non-Abelian Metabelian Group

Non-Abelian Metabelian Chromatic | Non-Abelian Metabelian Chromatic
Groups No. Groups No.
S, 2 Mudular —16 4
D, 2 B 4
D; 4 K 4
A, 3 G,, 4
Z,37, 4 D, 8
D, 4 S, %xZ, 6
D, 6 (Z,xZ)A Z, 8
D, 6 D, 8
Quasi — Dihedral Group 6 F,=ZAZ, 4
D,xZ, 4 737, 8
7, xQ, 4 7,37, 6
O, 6 D, 10

Proposition 3.3: Let Q,= <a,b ca*=1,a> =b*,b"'ab :a“> be a non-abelian
metabelian group of order 8. The independent number of the commuting graph of G
is (g™ )=3.

Proof: From figure 3.2, the maximum independent set ={a,b,c}, where aec 4,b € B
and ¢ €C is 3. Since the independent number is the number of vertices in maximum

independent set, thus o (™" ) =3.
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Table 3.4: The Independent Number of Non-Abelian Metabelian Group

Non-Abelian Metabelian | Independent | Non-Abelian Metabelian | Independent
Groups No. Groups No.
S, 4 Mudular —16 3
D, 3 B 3
D 6 K 3
A, ) G,, 3
Z,aZ, 4 D, 10
D, 4 S, xZ, 4
D; 8 (Z,xZ,)3 Z, 10
D, 5 D, 6
Quasi — Dihedral Group 5 F,=Z,3a7Z, 6
D,xZ, 3 7,47, 6
Z, %0, 3 7,47, 8
O 5 D, 12
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